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Abstract. A tractor gearbox test rig has been used to dofligmals from different types of
bearing faults. For vibration monitoring acceler¢enge have been used to obtain vibration
data. For fuel-injectors a bearing checker has lesed in order to collect acoustic data. One
class Self Organizing Maps (OCSOM) are used fordiietg faults when exposed to actual
data from the system representing a yet unknowte.sEeature extraction was performed
using seven features. The feature vectors are fétbo the OCSOM for training. OCSOM
classification gave promising results (more tha®98orrect classification). The fusion of
features from both the vertical and the horizor#tetelerometer resulted in accurate fault
detection. In the case of the fuel-injectors thasiiility of using one-class SOM has been
tested in the detection of signal deviations intificafailure with high detection performance.

Keywords: novelty detection, condition monitoring, neural wetks, unsupervised
learning, self organizing map.

1 Introduction

The use of vibration signals is quite common infiekl of condition monitoring of
rotating machinery. By comparing the signals of @ahine running in normal and
faulty conditions, detection of faults like mass batance, rotor rub, shaft
misalignment, gear failures and bearing defecposible. These signals can also be
used to detect the incipient failures of the maehiomponents, through an on-line
monitoring system, reducing the possibility of chtaphic damage and the down
time. The procedure of fault diagnosis starts wdtta acquisition, followed by
feature extraction, fault detection and identificat Feature extraction is critical for
the success of the diagnostic procedure. Extendftis in the inner and outer races
are common in rolling element bearings (see an pi@m Fig. 1).

The use of vibration signals is quite common infikkl of condition monitoring
and fault diagnosis of bearings (Xu et al., 200%).inspect raw vibration signals, a



wide variety of techniques have been introduced thay be categorized into two
main groups: classic signal processing (McFaddehSmith, 1984) and intelligent
systems (Paya et al., 1997).

Fig. 1. Example of an extended fault in the inner race.

In the current work vibration monitoring is applied the health condition
monitoring and fault detection of two tractor compats, the tractor gear box and
the fuel-injectors. An approach from artificial éfitgence, Self Organizing Maps
(SOM) are used in the form of One Class SOM forectiig deviations in the
vibration response of faulty bearings and subsettyuém the acoustic response of
fuel-injectors associated with malfunction due &eaw

2 Materialsand Methods

Two experimental platforms (one for bearings and for fuel-injectors) have been
developed and used for commissioning experiments fawit detection and
performing data acquisition. These data were furffrecessed to extract specific
features and develop novelty detection technigakevant to fault presence. Details
are presented in the following sections.

2.1 Gear box test platform data acquisition

A gearbox test rig has been used in order to dofigmals from different types of
bearing faults. A photograph of the rig showing fusition of the accelerometers
and the encoder at the output shaft is shown inFigawalhi, 2007). Two types of
faults (inner race and outer race crack) were dasteler a 50 Nm load, while setting
the output shaft speed to 10 Hz (600 rpm). Vibrasignals were collected using two
accelerometers positioned on the top of the geadasing above the defective
bearing (vertical accelerometer) and sideways i@y (horizontal



accelerometer). The 1.35 seconds (65536 samptp®lsiwere sampled at 48 kHz.

A photo-reflective switch was placed near the oughaft to measure its speed by
providing a once per rev tacho signal. The torqureshich case was measured at the
input shaft.

Fig. 2. The spur gear rig.

2.2 Fud-injector data acquisition

The Bearing Checker (manufactured by SPM Instrujnesgis used for the fuel-
injector measurements (Fig. 3). Normally, this riastent is used to measure the
level of impulse during operation of the machina @n embedded microprocessor
impulse analyzer samples from different bearings matord the operational status.
The Bearing Checker has a 1.5 mm headphone jagh@sn in. The computer's
sound card has a corresponding audio input. Seviteewith nail jack 1.5 mm was
connecting the output of the Bearing checker tarpeat of the computer sound card.
In this the transfer of sound from the Bearing éleecto the computer. The
registration and storage of sound was performedguiie free program Audacity.
The sound was saved in mp3 format with Bit ratekbp8. To control the audio
recording earphones were used which were conn&zi@domputer.

Data acquisition of fuel-injector sounds was perfed on fuel-injectors of a New
Holland TN65N multipurpose tractor, three fuel-itigrs controlled electronically,
one healthy (fuel-injectorl), one slightly damadégkl-injector2) and one audibly
deviating from a healthy state (fuel-injector3).

Additionally, data acquisition of fuel-injector smis was performed on fuel-
injectors of a Zetor 7711 tractor, used for vittoué, four fuel-injectors controlled
mechanically, fuel-injectors4-5-6-7 all deviatingroh healthy state. All



malfunctioning fuel-injectors needed cleaning tostoee their functionality.
Additionally, a newly installed fuel-injector8 waslded for testing.

T

Fig. 3. Data acquisition setup for sounds emitted fromfumationing fuel-injectors. The
Bearing checker (by SPM Instrument) is shown ondfte

2.3 Signal processing and featur e deter mination acquisition

To inspect raw vibration or sound signals, a wideiaety of techniques have been
introduced that may be categorized into two maiupgs: classic signal processing
and intelligent systems. To make mention of a felRT, Wigner—Ville distribution,
wavelets, blind source separation, statistical aigmalysis, and their combinations
are classic signal processing methods. Neural nkthased, genetic algorithm
based, fuzzy logic based, various similar classfiexpert systems, and hybrid
algorithms can be classified as intelligent systefesiture extraction was performed
using seven features. The first six features wateduced in (Lei et al., 2009):
Kurtosis, Skewness, Crest, Clearance, Shape andldemgndicators. A newly
proposed feature consisting of the line integrahefacceleration or the sound signal
is introduced in this work. All the used featureevide statistical information about
the nature of data, and were found to be reasorgduyg features for bearing fault
detection. The Kurtosis is the fourth moment abth& mean normalized with
variance and for N points is given by Eq. 1. Ahet features are given by Egs. 2-6.
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line integral feature foN sampling points is given by Eq. 7:
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Where N is the number of sample points (equal t@) 50 the window used to
calculate Kurtosis and the other features and évdynproposed line integral feature
and Ts is the sampling period. The presented festwere used for both the case of
vibration signals from the gearbox test rig and $hends collected from the fuel-
injectors.

2.4 Sdf Organizing Map

The Self-Organizing Map also called SOM (KohonddQD) is a neural network that
maps signals from a high-dimensional space to a onéwo-dimensional discrete

lattice (M) of neuron units. Each neuron stores a weight. Trep preserves

topological relationships between inputs in a whagt theighbouring inputs in the
input space are mapped to neighbouring neurontseimiap space. SOM mimics the
clustering behavior observed in biological neuretworks, by grouping units that
respond to similar stimuli together. Nerve cellspyrons, in the cortex of the brain
seem to be clustered by their function. For exarbpdén cells responsible for vision,
form the visual cortex and those responsible faring form the auditory cortex.



The learning rule of the SOM consists of two distiphases: when an inpdt is
presented, search for the best matching unibnow through competition, and the
update of the codebook patterns of theu and its neighbours. In the basic SOM the
activations of the units are inversely proportiotmltheir Euclidean distances from
the input pattern hence thenu can therefore be defined as:

b(x) = arg min|x—m, | (8)
ieM

where b(X) is the index of thému, M, is the codebook vector of uriitand X

is the input pattern vector. The update part of thie moves thebmu and its
neighbours towardX to slightly enforce maps response to the pattehe dpdate
rule can be written as follows:

Am. =y -h(b(x),i)(x-m,) (9)

where y is a learning rate parameter ahb(x),i) captures the neighborhood

interaction between themu b(X) and the uniti being updated. We can also write
equation (9) as:

Am. =y-H(x,i)(x—m,) (10)

where H(X,i) is a shorthand notation fan(b(x),i). Equations (8) and (10)

define a Hebbian learning rule, where the stregtthe training step is determined
not only by the learning rate parameter)0 <1, but also by the relationship of the

updated unii with thebmu b(X) on the map.

The inter-unit relationships are captured by thégmeorhood h(i, j)which

defines how strongly units are attracted to eablerotin essence the learning rule of
the SOM defines the model as a collection of coitipetunits that are related
through the neighborhood function. In practice, tihés are placed on a regular low
dimensional grid and the neighborhood is definedaamonotonically decreasing
function on the distance of the units on the mdfick thus creating a latent space,
which has the dimension of the map grid and fldityoidetermined by the
neighborhood function. The SOM can produce a flag/lén the sense that the map
follows the manifold, embedding when the dimensidrthe map grid matches the
dimension of the input data manifold. A typical @efor the neighborhood function

is a Gaussian:
. p{olM(i,j)Z}
h(i, j) = exp 41— (11)
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where d,, (i, j) is a distance measure in the map spate ¢ is the variance

of the Gaussian. The radius of the neighborhoodsigally but not necessarily
decreased during training. Likewise, the learniage rparametery is normally

decreased in accordance to a predetermined costihgdule, aiming to allow the
map sufficient time and freedom to organize before tuning the codebook.

2.5 OneClass SOM

In most cases of fault development in machineryel®no unique description of the
faults but there are available a number of comptnéimat are either new or in
different stages of malfunctioning behavior, whichn not be quantified exactly.
This is a common situation since the possible $aale either too many to reproduce
or it is too costly to reproduce them. In some saisds even impossible if the
components that might experience a fault are iredlvin safety critical
infrastructure. In safety critical applications;jdstimportant to detect the occurrence
of abnormal events as quickly as possible befaweifstant performance degradation
results.

Therefore, contrary to the approach followed fa tlases where there are specific
faults clearly defined, in usual cases only thelthgacomponents can be used as
target classification class and subsequently oassckclassification methods are
preferred. One-class classification has the follmacharacteristics:

. Only information of target class (not outlier £$is available;

. Boundary between the two classes has to be dstinffeom data of only
genuine class;

. Task: to define a boundary around the targesdqlesaccept as much of the
target objects as possible, to minimize the chafieecepting outlier objects).

As shown if Fig. 4, given a target domain ¥ere are two errors that can be
defined E related to false rejected target objects apdrdéfated to false accepted
outlier objects. The circular area correspondshtorough description of the target
domain by the selected one class classifier.

Using a uniform outlier distribution also meanstthdnen g is minimized, the
data description with minimal volume is obtained. i8stead of minimizing both,E
and g, a combination of Eand the volume of the description can be minimited
obtain a good data description.

Xt

Fig. 4. Domains of target dataset and one-class classifier



At first, an one class SOM (OCSOM) is trained wittrmal operation data. Then
the feature vector corresponding to the unideutifiskeasurement is compared with
the weight vectors of all map units, and if the Besa difference exceeds a
predetermined threshold, the process is probabdyfault situation. This conclusion
is based on the assumption that a large quantizagioor corresponding to the
operation point belonging to the space not covéredhe training data. Therefore,
the situation is new and something is possibly gaibnormal. Depending on how
far away the current process is deviating from tlegmal operation state, a
guantitative degradation index can be calculated.

In the condition monitoring application, the onasd SOM (OCSOM) builds a
model from training on healthy bearing and fuekaipr data and then classifies test
data as either normal or outlier based on its gédeaé deviation from the healthy
training data. During novelty recognition, the umiseexemplar from a bearing or
fuel-injector of unknown health state forms theunpo the network and the SOM
algorithm determines the best matching unit. Inrfaus & Gero (Saunders and
Gero, 2001) and Vesanto (Vesanto et al., 1998heifvector distance or quantisation
error between the best matching unit (bmu) and eeemplar datax{"=") exceeds
some pre-specified threshold (d) then the exemiglarlassified as novel. Eq. 12
gives the minimum vector distance for the bmu amgares this to the threshold.

n-1
min(>_ (™ -m;)*)>d, ieM (12)
j=0

WhereM represents the SOM grid of neurons as in equéBpn

There are many different heuristics to define &ghold depending on the utility
of the threshold and the particular structure of thata set. A simple way to
determine a threshold (d) relies on the distanetsden codebook vectors and target
vectors in the training set that have selected taerhmu which is a measure of the
guantization error. These distances have to bellead first according to Eq. 13:

N-1
distancess mint, (X" - m? )ieM (13)
k=0

The threshold is determined according to the Matlade given here which is
further explained below:

di stances_sorted=sort (di stances);
frac=round(fracti on_targets*length(target_set));
t hreshol d=(di st ances_sorted(frac)+di stances_sorted(frac+1))/2;

By selecting the threshold to represent a fractibthe distances for the whole
training set we can get distance values repreggritie most proximal to the
codebooks data vectors when the distances aredsdmte¢his case the quantisation
errors might be due to outliers so the fractiomewould represent the distances that
were calculated for a distribution of the distanicesuding outlier values. By taking



the 99% fraction of the distances between datacaaltbooks as belonging to the
dataset we define a description hypersphere thathadius including the 99% of
the data. This leaves a 1% outliers that will kessified as such since they exceed
the target set description radius. CorrespondingFig. 4 this would be the
contributing factor to Ewhile we have minimized the target data descniptiy
thresholding according to a fraction of the data.plain terms it means that by
tightening the target data description we can dffior a number of false rejects in
order to obtain a more accurate novelty detectibickvwould be impossible with a
very wide region of acceptance due to a very higieshold. In an explanatory
schematic (Fig. 5) one can see the different adefined by the threshold to the best
matching units and the Voronoi polygons defining tthomains of the OCSOM
neurons. It can be seen that some data pointsvihat be classified as belonging to
a neuron now fall outside the threshold-defined/goh that delimits the target data
from the novel data belonging to vibration and atigusignatures from damaged
components (this is just an illustration, the aktleta are high dimensional and can
not be visualized directly).
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Fig. 5. Domains of target dataset and associated Voroobigpns and threshold based
classifier for OCSOM. The threshold defined targatdall inside the grey border line.

3 Resultsand discussion

For the bearing fault recognition an OCSOM was ugedalidation set was used to
test the generalisation performance of the OCSOMW!I.t8st the effectiveness of
OCSOM, the 75% of the target set containing onlglthg bearing instances have
been used for training while the 25% have been usedrder to test the

generalisation of the OCSOM. These were resultsaforOCSOM of 64 neurons
(arranged in a 8x8 grid) which gave the best redujttesting different sizes between
5 and 25. The implementation used the simulatiofiwsoe Matlab 2010b

(Mathworks). Seven features of the same type fracheaccelerometer were used.
The same order has been used for the horizontaleaometer in order to build the



fusion vector. The fusion (by direct concatenatioh)4 vibration features from both
the vertical and the horizontal accelerometer, ttu¢heir complementary nature,
results in more accurate separation of classesdiegafault position as one can
deduce from the results presented in Table 1. Towect novelty detection
percentage for fusion reaches 94.31% which is mighan the results for both
horizontal (67.65%) and vertical (90.02%) which meane accelerometer alone
cannot detect fault presence accurately. The canmitarity of features was
expected because the vibration modes were meaguitegb orthogonal directions
(vertical and horizontal) which carry projectiont the vibration shapes on these
independent axes. When using 25 neurons (5x5 tir@jalse rejects decrease and a
97.35% correct healthy bearing recognition is adde At the same time the correct
novelty detection percentage falls to 90.39%. Serall, the 64-neuron architecture
is better for novelty detection. This could be doghe complexity of the damaged
bearing data due to incorporating two different dgmtypes (inner and outer race
fault). The added value of the newly introducedtdea of line integral is proven
from training and testing with and without the limtegral features. In the case the
line integrals of the vertical and horizontal aecemeter signals are omitted (12 out
of 14 features kept), the result is 92.94% for twaland 81.37% for novelty
detection which is much less than when they arludezl (see Table 1, the result for
fusion). When omitting only the line integral oftlvertical accelerometer signal (13
out of 14 fusion features kept) the result is 9%5for healthy and 84.31% for
novelty detection. When omitting only the line igtal of the horizontal
accelerometer signal the result is 94.90% for hgalind 90.20% for novelty
detection. So, the inclusion of the line integeatfire enhances the results.

Tablel. Results of OCSOM with 64 neurons predicting beahieglth condition.

Actual Healthy bearing according toExtended fault according to
health state OCSOM OCSOM
96.08% (fusion)
E::rlitgy 96.86% (vertical) 3.92% (fusion)
9 94.90% (horizontal)
94.31% (fusion)
E"Sﬁ”de‘j 5.69% (fusion) 90.02% (vertical)

67.65% (horizontal)

The OCSOM was used to classify the fuel-injectora target class corresponding
to healthy fuel-injectors and detect outliers imdiieg fuel-injectors that are
malfunctioning. As target class, features belongmduel-injectorl have been used.
All other fuel-injectors have been used for testing performance of the OCSOM.
The OCSOM was calibrated by splitting the data 5&67training of the target set
containing only healthy bearing instances and 2&8firtg sets has resulted in 100%
correct classification for the target class of fugéctorl and 99.65% (97.89%
without using the feature of the line integral) whesing fuel-injector7 as outlier
class for testing. These were results for a OCSOMO0® neurons (arranged in a
10x10 grid) which gave the best results by testliffgrent sizes between 5 and 25.



Further testing of the obtained OCSOM classifies warformed using all available
fuel-injectors. Results are shown in Table 2. levédent that all fuel-injectors have
been identified correctly based on their respectiordition. The slightly damaged
second fuel-injector has also been identified abway to damage which is accurate
according to the expert opinion based on the semmdsion from that fuel-injector.

Table2. Results of OCSOM based classification of fuel-itgetiealth condition.

Fuel-injector no. # Actual OCSOM classifies as OCSOM classifies
condition healthy (percentage) as outlier (damaged)

1 Healthy 99.21 0.79

2 Slight damage 27.02 72.98
3 Damaged 1.75 98.25
4 Damaged 6.49 93.51
5 Damaged 9.65 90.35
6 Damaged 2.81 97.19
7 Damaged 1.32 98.68
8 Healthy 95.44 4.56

In safety critical applications of novelty faulttdetion it is important to establish
what degree of change is significant. Normal systeemaviour may shift, for
example, due to aging, system modifications, seslschanges and change in
operating conditions. An important issue concerr#aioing robust novelty
thresholds that lead to reliable novelty detectiavelty detection algorithms based
on one-class neural networks have to be traineld ddta which adequately span the
operating envelope so that false positives wouldogour during normal operation.

4 Conclusions

It has been shown that the OCSOM can perform dadeori from accelerometer
sensors through combining vibration features. THeatures can be used to detect
faults in roller bearings and can therefore prowébé a powerful tool for bearing
health monitoring. Different bearing faults candmtected against healthy bearings
with high accuracy by using the collective respooisseveral features and the fusion
of different sensors, which may not be obviousust Jooking at the data using other
diagnostic techniques. The use of several feaamdsa newly introduced feature, the
line integral of the acceleration signal has giypeamising results in detecting the
position of bearing faults. The feature based fusié the vertical and horizontal
accelerometer signals has increased the accurabgasing fault detection to more
than 95% (more than 96% for healthy and 94% foltyabearings). In the case of
fuel-injector malfunctioning detection, the sampeyof features has been used. Due



to the nature of the problem, relying only on aticusignatures from healthy fuel-
injectors, one-class classification has been usemhe-class SOM has been used and
has given very promising results. Further it wasgilde to detect correctly the
condition of all the fuel-injectors that were pretal to the one-class SOM. This
result indicates that OCSOM is a robust classéigd can be used for detecting fuel-
injector malfunction with high confidence. It isapined that this work be extended to
include more real data, different features andtfaules for bearings and gear boxes
and also different types of fuel-injectors. A fiethimprovement of OCSOM could
result from defining context sensitive thresholdl also activation profiles that
could be implemented as a kernel map indicatingettpsthrough neuron activity
bursts. The presented OCSOM technique for novedtgadion can be extended to
other fields where activity monitoring and noveligtection are needed, like process
control, network security and sensor networks fmious applications.
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